This image was uploaded in the JPEG format even though it consists of non-photographic data. This information could be stored more efficiently or accurately in the PNG or SVG format. If possible, please upload a PNG or SVG version of this image without compression artifacts, derived from a non-JPEG source (or with existing artifacts removed). After doing so, please tag the JPEG version with {{Superseded|NewImage.ext}} and remove this tag. This tag should not be applied to photographs or scans. If this image is a diagram or other image suitable for vectorisation, please tag this image with {{Convert to SVG}} instead of {{BadJPEG}}. If not suitable for vectorisation, use {{Convert to PNG}}. For more information, see {{BadJPEG}}.
Summary
DescriptionAlgorithm cancer magnetic nanotherapy.jpg
English: The magneto-mechano-chemical synthesis (1) is accompanied by splitting of electron energy levels (SEELs) and electron transfer in magnetic field (2) from nanoparticles Fe3O4 to doxorubicin. The concentration of paramagnetic centers (free radicals) is increased in the magneto-sensitive complex (MNC) (3). The local combined action of constant magnetic and electromagnetic fields and MNC in tumor (4) initiated SEELs, free radicals, leading to oxidative stress and electron and protontransport deregulation in the mitochondrion (5). Magnetic nanotherapy has more effectively inhibited the synthesis of ATP in mitochondria of tumor cell and induced the death of tumor cells compared to conventional doxorubicin.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.