Jump to content

File:Double Point on Edwards Curve.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 540 × 540 pixels, file size: 26 KB)

Summary

Description
English: The plot presents the geometry meaning of point doubling on the Edwards curves .

Here you can see doubling a point on the curve with . The point has x-coordinate -0.6.

Unlike the traditional elliptic curves where points and lay on the tangent line to the curve at the point , in the case of the Edwards curves the points and lay on a conic that touches the curve at the point .

The graph was created using the following script:

import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple

# Utility type
Point = namedtuple('Point', ['x', 'y'])

d = -30
def edwards_y(x):
    return np.sqrt((x*x - 1)/(d*x*x - 1))

# Draw Edwards curve
x = np.linspace(-1,1,200)
ypos = edwards_y(x) 
yneg = -ypos

plt.figure(figsize=[6, 6])
plt.plot(x,ypos, 'b')
plt.plot(x,yneg, 'b')
#  Draw neutral point
plt.scatter(0,1)
plt.annotate("O", (0.01, 1.01))
# Draw order 2 point
plt.scatter(0,-1)
plt.annotate("O'", (0.01, -1.05))

# Draw the point P
P=Point(-0.6, edwards_y(-0.6))
plt.scatter(*P)
plt.annotate("P", (P.x-0.05, P.y+0.05))

# Compute and draw 2P
def edwards_sum(x1,y1,x2,y2):
    return ( (x1*y2+x2*y1)/(1+d*x1*x2*y1*y2) , (y1*y2 - x1*x2)/(1-d*x1*x2*y1*y2) )

P2 = Point(*edwards_sum(*P, *P))
plt.scatter(*P2)
plt.annotate("2P",  (P2.x-0.05, P2.y+0.05))

P2_ = Point(-P2.x, P2.y)
plt.scatter(*P2_)
plt.annotate("-2P",  (P2_.x+0.01, P2_.y+0.05))
#  Draw the line that connects 2P and -2P
plt.axhline(P2.y, linestyle='--', color="grey")

# Draw the conic that P1, P2 and -(P1+P2) belong to
def conic_coefs(x,y):
    "Computes coeffitiens of the quadratic form Axy + Bx + Cx + D"
    return (d*x*x*y - 1,
            y - x*x,
            x*(1-y),
            x*(1-y)
    )

def conic_y(x, A,B,C,D):
    return -(B*x + D)/(A*x + C)

A,B,C,D = conic_coefs(*P)
#  Left and right branches of the hyperbole
xleft = np.linspace(-1,-0.3,50)
xright = np.linspace(-0.01, 1, 50)

yleft = conic_y(xleft, A,B,C,D)
yright = conic_y(xright, A,B,C,D)

plt.plot(xleft, yleft,"--", color="green")
plt.plot(xright, yright,"--", color="green")

# Draw axis lines
plt.axhline(0, color='black')
plt.axvline(0, color='black')

# Set same scale on x and y
plt.gca().set_aspect('equal', adjustable='box')

plt.savefig("Double_Point_on_Edwards_Curve.svg")
Русский: График иллюстрирует геометрический смысл удвоения точек на кривых Эрдвадса .

На графике изображено удвоение точки на кривой с параметром . Точка с x-координатой -0.6.

В отличие от традиционных эллиптических кривых, где точки и лежат на касательной к эллиптической кривой в точке , на кривых Эдвардса точки и лежат на гиперболе , которая касается график кривой в точке .
Date
Source Own work
Author Pakuula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Geometry meaning of doubling a point on an Edwards curve

Items portrayed in this file

depicts

20 December 2020

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current05:29, 20 December 2020Thumbnail for version as of 05:29, 20 December 2020540 × 540 (26 KB)PakuulaUploaded own work with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata