English: Vacuum oscillation probabilities for electron (black), muon (blue) and tau (red) neutrinos for the following parameter values:
- sin22θ13 = 0.10 (If it turns out to be much smaller or zero, the small wiggles shown here will be much smaller or non-existent, respectively.)
- sin22θ23 = 0.97 (It may turn out to be exactly one.)
- sin22θ12 = 0.861.
- δ = 0 (If it is actually large, these probabilities will be somewhat distorted and different for neutrinos and antineutrinos.)
- Δm2
12 = 6995759000000000000♠7.59×10−5 eV2.
- Δm2
32 ≈ Δm2
13 = 6997232000000000000♠2.32×10−3 eV2.
- Normal mass hierarchy.
Mathematica source code
CS[z_] = Re[z]^2 + Im[z]^2;
c12 := Cos[\[Theta]12]; c13 := Cos[\[Theta]13]; c23 := Cos[\[Theta]23];
s12 := Sin[\[Theta]12]; s13 := Sin[\[Theta]13]; s23 := Sin[\[Theta]23];
P[\[Alpha]_, \[Beta]_,
LoverE_, \[Delta]_, \[Theta]12_, \[Theta]23_, \[Theta]13_, \
\[CapitalDelta]ms12_, \[CapitalDelta]ms23_, inverted_] =
Block[{U, ms1, ms2, ms3},
ms1 = If[inverted, \[CapitalDelta]ms23 - \[CapitalDelta]ms12, 0]; (*
Absolute mass does not matter, so put the lightest at zero *)
ms2 = If[inverted, \[CapitalDelta]ms23, \[CapitalDelta]ms12];
ms3 = If[inverted, 0, \[CapitalDelta]ms12 + \[CapitalDelta]ms23];
U[a_, b_] := If[a == 1,
If[b == 1, c13 c12,
If[b == 2, c13 s12,
If[b == 3, s13 E^(-I \[Delta])]]],
If[a == 2,
If[b == 1, -c23 s12 - s13 s23 c12 E^(I \[Delta]),
If[b == 2, c23 c12 - s13 s23 s12 E^(I \[Delta]),
If[b == 3, c13 s23]]],
If[a == 3,
If[b == 1, s23 s12 - s13 c23 c12 E^(I \[Delta]),
If[b == 2, -s23 c12 - s13 c23 s12 E^(I \[Delta]),
If[b == 3, c13 c23]]]]]];
CS[Sum[Conjugate[U[\[Alpha], i]] U[\[Beta], i]
E^(-2 I ots If[i == 1, ms1, If[i == 2, ms2, If[i == 3, ms3, -1]]] LoverE), {i, 1, 3}]]];
(*********************************)
ots = 1.2669327621645516; (* constant *)
(* Neutrino parameters *)
\
\[Theta]23 = ArcSin[Sqrt[0.97`]]/2;
\[Theta]12 = ArcSin[Sqrt[0.861`]]/2;
\[Theta]13 = ArcSin[Sqrt[0.1]]/2;
\[Delta] = 0;
\[CapitalDelta]ms23 = 0.00232`;
\[CapitalDelta]ms12 = 0.0000759`;
(* Initial neutrino and max L/E for plot *)
initial = 2;
maxLE = 4000;
Plot[{
P[initial, 1,
LoverE, \[Delta], \[Theta]12, \[Theta]23, \[Theta]13, \
\[CapitalDelta]ms12, \[CapitalDelta]ms23, False],
P[initial, 2,
LoverE, \[Delta], \[Theta]12, \[Theta]23, \[Theta]13, \
\[CapitalDelta]ms12, \[CapitalDelta]ms23, False],
P[initial, 3,
LoverE, \[Delta], \[Theta]12, \[Theta]23, \[Theta]13, \
\[CapitalDelta]ms12, \[CapitalDelta]ms23, False]},
{LoverE, 0, maxLE}, PlotRange -> {0, 1}, PlotPoints -> 500,
PlotStyle -> {{Black, Thick}, {Blue, Thick}, {Red, Thick}},
Frame -> True,
FrameLabel -> {{"Probability", ""}, {"L/E (km/GeV)",
"Initial " <>
If[initial == 1, "Electron", If[initial == 2, "Muon", "Tau"]] <>
" Neutrino"}}, BaseStyle -> {FontSize -> 18}, ImageSize -> 500]