Mobile manipulator
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
A mobile manipulator is a robot system built from a robotic manipulator arm mounted on a mobile platform.
Description
[edit]A mobile robotic system combines the mobility offered by a mobile platform and dexterity offered by the manipulator. The mobile platform offers an extended workspace to the manipulator and more degrees of freedom to operate in. However, the operation of such a system is challenging because of the many degrees of freedom and the unstructured environment that it performs in. A system is generally composed of the mobile platform, the robotic manipulator arm, vision components, and tooling components.
Use Cases
[edit]Mobile manipulation is a subject of focus in development and research environments. Mobile manipulators, either autonomous or remote operated, are used in many areas, such as space exploration, military operations, home care and health care. Within the industrial field, the implementation of mobile manipulators has been limited. The necessary technology entities (mobile platforms, robot manipulators, vision, and tooling) are, to a large extent, available from off-the-shelf components.[1]
Few implementations of mobile robots in the industrial field have been reported due to the center of attention being drawn on optimization of the individual technologies, especially robot manipulators [2] and tooling,[3] while the integration, use, and application have been neglected in the field of industrial mobile manipulation. This means that few implementations of mobile robots, in production environments, have been reported – e.g.[4] and.[5]
Timeline
[edit]Year | Robot name | Company / Research Institute |
---|---|---|
1984 | MORO [6] | Fraunhofer-Gesellschaft, Germany |
1992 | Hilare 2bis | LAAS-CNRS, France |
2000 | Jaume | Robotic Intelligence Lab, Jaume I University, Spain |
2004 | FAuStO | University of Verona, Italy |
2006 | MM-500 | Neobotix GmbH, Germany |
2009 | Little Helper | Department of Production, Aalborg University, Denmark |
2012 | G-WAM | Robotnik Automation & Barrett Technologies, Spain & United States |
2012 | Human Support Robot (HSR)[7] | Toyota, Japan |
2013 | UBR-1 | Unbounded Robotics, United States |
2013 | X-WAM | Robotnik Automation & Barrett Technologies, Spain & United States |
2015 | CARLoS | AIMEN, Spain |
2015 | RB-1 | Robotnik Automation & Kinova Robotics, Spain & Canada |
2016 | TIAGo[8] | PAL Robotics, Spain |
2018 | MuR 205 | Institute of Assembly Technology, Leibniz University Hanover, Germany |
Video Example
[edit]One recent example is the mobile manipulator "Little Helper" from the Department of Production at Aalborg University.[9]
See also
[edit]Notes and references
[edit]- ^ M. Hvilshøj, S. Bøgh, O. Madsen and M. Kristiansen: The Mobile Robot “Little Helper”: Concepts, ideas and working principles, 14th IEEE International Conference on Emerging Technologies and Factory Automation, 2009
- ^ A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck and G. Hirzinger: The DLR lightweight robot: design and control concepts for robots in human environments, Industrial Robot, vol. 34, no. 5, pp. 376–385, 2007
- ^ H. Liu, P. Meusel, G. Hirzinger, M. Jin and Y. X. Liu: The Modular Multisensory DLR-HIT-Hand: Hardware and Software Architecture, IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 461–469, 2008
- ^ A. Stopp, S. Horstmann, S. Kristensen and F. Lohnert: Towards Interactive Learning for Manufacturing Assistant, IEEE Transactions on Industrial Electronics, pp. 705–707, 2003
- ^ E. Helms, R. D. Schraft and M. Hägele: rob@work: Robot assistant in industrial environments, Proceedings in IEEE International Workshop on Robot and Human Interactive Communication, pp. 399–404, 2002
- ^ Ghodsian, Nooshin; Benfriha, Khaled; Olabi, Adel; Gopinath, Varun; Arnou, Aurélien (January 2023). "Mobile Manipulators in Industry 4.0: A Review of Developments for Industrial Applications". Sensors. 23 (19): 8026. Bibcode:2023Senso..23.8026G. doi:10.3390/s23198026. PMC 10575048. PMID 37836855.
- ^ Yamamoto, Takashi; Terada, Koji; Ochiai, Akiyoshi; Saito, Fuminori; Asahara, Yoshiaki; Murase, Kazuto (2019). "Development of Human Support Robot as the research platform of a domestic mobile manipulator". ROBOMECH Journal. 6: 1–15. doi:10.1186/s40648-019-0132-3. S2CID 148563252.
- ^ Pages, Jordi; Marchionni, Luca; Ferro, Francesco (15 April 2016). "TIAGo: the modular robot that adapts to different research needs" (PDF). Retrieved 15 April 2016.
- ^ Research project; Industrial maturation and exploitation of mobile manipulators – more info: MachineVision.dk