Jump to content

Truncated rhombicuboctahedron

From Wikipedia, the free encyclopedia
Truncated rhombicuboctahedron
Schläfli symbol trr{4,3} =
Conway notation taaC
Faces 50:
24 {4}
8 {6}
6+12 {8}
Edges 144
Vertices 96
Symmetry group Oh, [4,3], (*432) order 48
Rotation group O, [4,3]+, (432), order 24
Dual polyhedron Disdyakis icositetrahedron
Properties convex, zonohedron

The truncated rhombicuboctahedron is a polyhedron, constructed as a truncation of the rhombicuboctahedron. It has 50 faces consisting of 18 octagons, 8 hexagons, and 24 squares. It can fill space with the truncated cube, truncated tetrahedron and triangular prism as a truncated runcic cubic honeycomb.

Other names

[edit]
  • Truncated small rhombicuboctahedron
  • Beveled cuboctahedron

Zonohedron

[edit]

As a zonohedron, it can be constructed with all but 12 octagons as regular polygons. It has two sets of 48 vertices existing on two distances from its center.

It represents the Minkowski sum of a cube, a truncated octahedron, and a rhombic dodecahedron.

Excavated truncated rhombicuboctahedron

[edit]
Excavated truncated rhombicuboctahedron
Faces 148:
8 {3}
24+96+6 {4}
8 {6}
6 {8}
Edges 312
Vertices 144
Euler characteristic -20
Genus 11
Symmetry group Oh, [4,3], (*432) order 48

The excavated truncated rhombicuboctahedron is a toroidal polyhedron, constructed from a truncated rhombicuboctahedron with its 12 irregular octagonal faces removed. It comprises a network of 6 square cupolae, 8 triangular cupolae, and 24 triangular prisms. [1] It has 148 faces (8 triangles, 126 squares, 8 hexagons, and 6 octagons), 312 edges, and 144 vertices. With Euler characteristic χ = f + v - e = -20, its genus (g = (2-χ)/2) is 11.

Without the triangular prisms, the toroidal polyhedron becomes a truncated cuboctahedron.

Excavated
Truncated rhombicuboctahedron Truncated cuboctahedron
[edit]

The truncated cuboctahedron is similar, with all regular faces, and 4.6.8 vertex figure.

The triangle and squares of the rhombicuboctahedron can be independently rectified or truncated, creating four permutations of polyhedra. The partially truncated forms can be seen as edge contractions of the truncated form.

The truncated rhombicuboctahedron can be seen in sequence of rectification and truncation operations from the cuboctahedron. A further alternation step leads to the snub rhombicuboctahedron.

related polyhedra
Name r{4,3} rr{4,3} tr{4,3} Rectified
rrr{4,3}
Partially truncated Truncated
trr{4,3}
srCO
Conway aC aaC=eC taC=bC aaaC=eaC dXC dXdC taaC=baC saC
Image
VertFigs 3.4.3.4 3.4.4.4 4.6.8 4.4.4.4d and
3.4.4d.4
4.4.4.6i and
4.6.6i
4.6i.8 and
3.4.6i.4
4.8.8p and
4.6.8p
3.3.3.3.4 and
3.3.4.3.4

See also

[edit]

References

[edit]
  1. ^ "Prism Expansions".
[edit]