In astrophysics , the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations , developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar , and the physicist Enrico Fermi and Norman R. Lebovitz.[ 1] [ 2] [ 3]
Mathematical description [ edit ]
Consider a fluid mass
M
{\displaystyle M}
of volume
V
{\displaystyle V}
with density
ρ
(
x
,
t
)
{\displaystyle \rho (\mathbf {x} ,t)}
and an isotropic pressure
p
(
x
,
t
)
{\displaystyle p(\mathbf {x} ,t)}
with vanishing pressure at the bounding surfaces. Here,
x
{\displaystyle \mathbf {x} }
refers to a frame of reference attached to the center of mass. Before describing the virial equations, let's define some moments .
The density moments are defined as
M
=
∫
V
ρ
d
x
,
I
i
=
∫
V
ρ
x
i
d
x
,
I
i
j
=
∫
V
ρ
x
i
x
j
d
x
,
I
i
j
k
=
∫
V
ρ
x
i
x
j
x
k
d
x
,
I
i
j
k
ℓ
=
∫
V
ρ
x
i
x
j
x
k
x
ℓ
d
x
,
etc.
{\displaystyle M=\int _{V}\rho \,d\mathbf {x} ,\quad I_{i}=\int _{V}\rho x_{i}\,d\mathbf {x} ,\quad I_{ij}=\int _{V}\rho x_{i}x_{j}\,d\mathbf {x} ,\quad I_{ijk}=\int _{V}\rho x_{i}x_{j}x_{k}\,d\mathbf {x} ,\quad I_{ijk\ell }=\int _{V}\rho x_{i}x_{j}x_{k}x_{\ell }\,d\mathbf {x} ,\quad {\text{etc.}}}
the pressure moments are
Π
=
∫
V
p
d
x
,
Π
i
=
∫
V
p
x
i
d
x
,
Π
i
j
=
∫
V
p
x
i
x
j
d
x
,
Π
i
j
k
=
∫
V
p
x
i
x
j
x
k
d
x
etc.
{\displaystyle \Pi =\int _{V}p\,d\mathbf {x} ,\quad \Pi _{i}=\int _{V}px_{i}\,d\mathbf {x} ,\quad \Pi _{ij}=\int _{V}px_{i}x_{j}\,d\mathbf {x} ,\quad \Pi _{ijk}=\int _{V}px_{i}x_{j}x_{k}d\mathbf {x} \quad {\text{etc.}}}
the kinetic energy moments are
T
i
j
=
1
2
∫
V
ρ
u
i
u
j
d
x
,
T
i
j
;
k
=
1
2
∫
V
ρ
u
i
u
j
x
k
d
x
,
T
i
j
;
k
ℓ
=
1
2
∫
V
ρ
u
i
u
j
x
k
x
ℓ
d
x
,
e
t
c
.
{\displaystyle T_{ij}={\frac {1}{2}}\int _{V}\rho u_{i}u_{j}\,d\mathbf {x} ,\quad T_{ij;k}={\frac {1}{2}}\int _{V}\rho u_{i}u_{j}x_{k}\,d\mathbf {x} ,\quad T_{ij;k\ell }={\frac {1}{2}}\int _{V}\rho u_{i}u_{j}x_{k}x_{\ell }\,d\mathbf {x} ,\quad \mathrm {etc.} }
and the Chandrasekhar potential energy tensor moments are
W
i
j
=
−
1
2
∫
V
ρ
Φ
i
j
d
x
,
W
i
j
;
k
=
−
1
2
∫
V
ρ
Φ
i
j
x
k
d
x
,
W
i
j
;
k
ℓ
=
−
1
2
∫
V
ρ
Φ
i
j
x
k
x
ℓ
d
x
,
e
t
c
.
where
Φ
i
j
=
G
∫
V
ρ
(
x
′
)
(
x
i
−
x
i
′
)
(
x
j
−
x
j
′
)
|
x
−
x
′
|
3
d
x
′
{\displaystyle W_{ij}=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}\,d\mathbf {x} ,\quad W_{ij;k}=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}x_{k}\,d\mathbf {x} ,\quad W_{ij;k\ell }=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}x_{k}x_{\ell }d\mathbf {x} ,\quad \mathrm {etc.} \quad {\text{where}}\quad \Phi _{ij}=G\int _{V}\rho (\mathbf {x'} ){\frac {(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}\,d\mathbf {x'} }
where
G
{\displaystyle G}
is the gravitational constant .
All the tensors are symmetric by definition. The moment of inertia
I
{\displaystyle I}
, kinetic energy
T
{\displaystyle T}
and the potential energy
W
{\displaystyle W}
are just traces of the following tensors
I
=
I
i
i
=
∫
V
ρ
|
x
|
2
d
x
,
T
=
T
i
i
=
1
2
∫
V
ρ
|
u
|
2
d
x
,
W
=
W
i
i
=
−
1
2
∫
V
ρ
Φ
d
x
where
Φ
=
Φ
i
i
=
∫
V
ρ
(
x
′
)
|
x
−
x
′
|
d
x
′
{\displaystyle I=I_{ii}=\int _{V}\rho |\mathbf {x} |^{2}\,d\mathbf {x} ,\quad T=T_{ii}={\frac {1}{2}}\int _{V}\rho |\mathbf {u} |^{2}\,d\mathbf {x} ,\quad W=W_{ii}=-{\frac {1}{2}}\int _{V}\rho \Phi \,d\mathbf {x} \quad {\text{where}}\quad \Phi =\Phi _{ii}=\int _{V}{\frac {\rho (\mathbf {x'} )}{|\mathbf {x} -\mathbf {x'} |}}\,d\mathbf {x'} }
Chandrasekhar assumed that the fluid mass is subjected to pressure force and its own gravitational force, then the Euler equations is
ρ
d
u
i
d
t
=
−
∂
p
∂
x
i
+
ρ
∂
Φ
∂
x
i
,
where
d
d
t
=
∂
∂
t
+
u
j
∂
∂
x
j
{\displaystyle \rho {\frac {du_{i}}{dt}}=-{\frac {\partial p}{\partial x_{i}}}+\rho {\frac {\partial \Phi }{\partial x_{i}}},\quad {\text{where}}\quad {\frac {d}{dt}}={\frac {\partial }{\partial t}}+u_{j}{\frac {\partial }{\partial x_{j}}}}
First order virial equation [ edit ]
d
2
I
i
d
t
2
=
0
{\displaystyle {\frac {d^{2}I_{i}}{dt^{2}}}=0}
Second order virial equation [ edit ]
1
2
d
2
I
i
j
d
t
2
=
2
T
i
j
+
W
i
j
+
δ
i
j
Π
{\displaystyle {\frac {1}{2}}{\frac {d^{2}I_{ij}}{dt^{2}}}=2T_{ij}+W_{ij}+\delta _{ij}\Pi }
In steady state, the equation becomes
2
T
i
j
+
W
i
j
=
−
δ
i
j
Π
{\displaystyle 2T_{ij}+W_{ij}=-\delta _{ij}\Pi }
Third order virial equation [ edit ]
1
6
d
2
I
i
j
k
d
t
2
=
2
(
T
i
j
;
k
+
T
j
k
;
i
+
T
k
i
;
j
)
+
W
i
j
;
k
+
W
j
k
;
i
+
W
k
i
;
j
+
δ
i
j
Π
k
+
δ
j
k
Π
i
+
δ
k
i
Π
j
{\displaystyle {\frac {1}{6}}{\frac {d^{2}I_{ijk}}{dt^{2}}}=2(T_{ij;k}+T_{jk;i}+T_{ki;j})+W_{ij;k}+W_{jk;i}+W_{ki;j}+\delta _{ij}\Pi _{k}+\delta _{jk}\Pi _{i}+\delta _{ki}\Pi _{j}}
In steady state, the equation becomes
2
(
T
i
j
;
k
+
T
i
k
;
j
)
+
W
i
j
;
k
+
W
i
k
;
j
=
−
δ
i
j
Π
K
−
δ
i
k
Π
j
{\displaystyle 2(T_{ij;k}+T_{ik;j})+W_{ij;k}+W_{ik;j}=-\delta _{ij}\Pi _{K}-\delta _{ik}\Pi _{j}}
Virial equations in rotating frame of reference [ edit ]
The Euler equations in a rotating frame of reference, rotating with an angular velocity
Ω
{\displaystyle \mathbf {\Omega } }
is given by
ρ
d
u
i
d
t
=
−
∂
p
∂
x
i
+
ρ
∂
Φ
∂
x
i
+
1
2
ρ
∂
∂
x
i
|
Ω
×
x
|
2
+
2
ρ
ε
i
ℓ
m
u
ℓ
Ω
m
{\displaystyle \rho {\frac {du_{i}}{dt}}=-{\frac {\partial p}{\partial x_{i}}}+\rho {\frac {\partial \Phi }{\partial x_{i}}}+{\frac {1}{2}}\rho {\frac {\partial }{\partial x_{i}}}|\mathbf {\Omega } \times \mathbf {x} |^{2}+2\rho \varepsilon _{i\ell m}u_{\ell }\Omega _{m}}
where
ε
i
ℓ
m
{\displaystyle \varepsilon _{i\ell m}}
is the Levi-Civita symbol ,
1
2
|
Ω
×
x
|
2
{\displaystyle {\frac {1}{2}}|\mathbf {\Omega } \times \mathbf {x} |^{2}}
is the centrifugal acceleration and
2
u
×
Ω
{\displaystyle 2\mathbf {u} \times \mathbf {\Omega } }
is the Coriolis acceleration .
Steady state second order virial equation [ edit ]
In steady state, the second order virial equation becomes
2
T
i
j
+
W
i
j
+
Ω
2
I
i
j
−
Ω
i
Ω
k
I
k
j
+
2
ϵ
i
ℓ
m
Ω
m
∫
V
ρ
u
ℓ
x
j
d
x
=
−
δ
i
j
Π
{\displaystyle 2T_{ij}+W_{ij}+\Omega ^{2}I_{ij}-\Omega _{i}\Omega _{k}I_{kj}+2\epsilon _{i\ell m}\Omega _{m}\int _{V}\rho u_{\ell }x_{j}\,d\mathbf {x} =-\delta _{ij}\Pi }
If the axis of rotation is chosen in
x
3
{\displaystyle x_{3}}
direction, the equation becomes
W
i
j
+
Ω
2
(
I
i
j
−
δ
i
3
I
3
j
)
=
−
δ
i
j
Π
{\displaystyle W_{ij}+\Omega ^{2}(I_{ij}-\delta _{i3}I_{3j})=-\delta _{ij}\Pi }
and Chandrasekhar shows that in this case, the tensors can take only the following form
W
i
j
=
(
W
11
W
12
0
W
21
W
22
0
0
0
W
33
)
,
I
i
j
=
(
I
11
I
12
0
I
21
I
22
0
0
0
I
33
)
{\displaystyle W_{ij}={\begin{pmatrix}W_{11}&W_{12}&0\\W_{21}&W_{22}&0\\0&0&W_{33}\end{pmatrix}},\quad I_{ij}={\begin{pmatrix}I_{11}&I_{12}&0\\I_{21}&I_{22}&0\\0&0&I_{33}\end{pmatrix}}}
Steady state third order virial equation [ edit ]
In steady state, the third order virial equation becomes
2
(
T
i
j
;
k
+
T
i
k
;
j
)
+
W
i
j
;
k
+
W
i
k
;
j
+
Ω
2
I
i
j
k
−
Ω
i
Ω
ℓ
I
ℓ
j
k
+
2
ε
i
ℓ
m
Ω
m
∫
V
ρ
u
ℓ
x
j
x
k
d
x
=
−
δ
i
j
Π
k
−
δ
i
k
Π
j
{\displaystyle 2(T_{ij;k}+T_{ik;j})+W_{ij;k}+W_{ik;j}+\Omega ^{2}I_{ijk}-\Omega _{i}\Omega _{\ell }I_{\ell jk}+2\varepsilon _{i\ell m}\Omega _{m}\int _{V}\rho u_{\ell }x_{j}x_{k}\,d\mathbf {x} =-\delta _{ij}\Pi _{k}-\delta _{ik}\Pi _{j}}
If the axis of rotation is chosen in
x
3
{\displaystyle x_{3}}
direction, the equation becomes
W
i
j
;
k
+
W
i
k
;
j
+
Ω
2
(
I
i
j
k
−
δ
i
3
I
3
j
k
)
=
−
(
δ
i
j
Π
k
+
δ
i
k
Π
j
)
{\displaystyle W_{ij;k}+W_{ik;j}+\Omega ^{2}(I_{ijk}-\delta _{i3}I_{3jk})=-(\delta _{ij}\Pi _{k}+\delta _{ik}\Pi _{j})}
Steady state fourth order virial equation [ edit ]
With
x
3
{\displaystyle x_{3}}
being the axis of rotation, the steady state fourth order virial equation is also derived by Chandrasekhar in 1968.[ 4] The equation reads as
1
3
(
2
W
i
j
;
k
l
+
2
W
i
k
;
l
j
+
2
W
i
l
;
j
k
+
W
i
j
;
k
;
l
+
W
i
k
;
l
;
j
+
W
i
l
;
j
;
k
)
+
Ω
2
(
I
i
j
k
l
−
δ
i
3
I
3
j
k
l
)
=
−
(
δ
i
j
Π
k
l
+
δ
i
k
Π
l
j
+
δ
i
l
Π
j
k
)
{\displaystyle {\frac {1}{3}}(2W_{ij;kl}+2W_{ik;lj}+2W_{il;jk}+W_{ij;k;l}+W_{ik;l;j}+W_{il;j;k})+\Omega ^{2}(I_{ijkl}-\delta _{i3}I_{3jkl})=-(\delta _{ij}\Pi _{kl}+\delta _{ik}\Pi _{lj}+\delta _{il}\Pi _{jk})}
Virial equations with viscous stresses [ edit ]
Consider the Navier-Stokes equations instead of Euler equations ,
ρ
d
u
i
d
t
=
−
∂
p
∂
x
i
+
ρ
∂
Φ
∂
x
i
+
∂
τ
i
k
∂
x
k
,
where
τ
i
k
=
ρ
ν
(
∂
u
i
∂
x
k
+
∂
u
k
∂
x
i
−
2
3
∂
u
l
∂
x
l
δ
i
k
)
{\displaystyle \rho {\frac {du_{i}}{dt}}=-{\frac {\partial p}{\partial x_{i}}}+\rho {\frac {\partial \Phi }{\partial x_{i}}}+{\frac {\partial \tau _{ik}}{\partial x_{k}}},\quad {\text{where}}\quad \tau _{ik}=\rho \nu \left({\frac {\partial u_{i}}{\partial x_{k}}}+{\frac {\partial u_{k}}{\partial x_{i}}}-{\frac {2}{3}}{\frac {\partial u_{l}}{\partial x_{l}}}\delta _{ik}\right)}
and we define the shear-energy tensor as
S
i
j
=
∫
V
τ
i
j
d
x
.
{\displaystyle S_{ij}=\int _{V}\tau _{ij}d\mathbf {x} .}
With the condition that the normal component of the total stress on the free surface must vanish, i.e.,
(
−
p
δ
i
k
+
τ
i
k
)
n
k
=
0
{\displaystyle (-p\delta _{ik}+\tau _{ik})n_{k}=0}
, where
n
{\displaystyle \mathbf {n} }
is the outward unit normal, the second order virial equation then be
1
2
d
2
I
i
j
d
t
2
=
2
T
i
j
+
W
i
j
+
δ
i
j
Π
−
S
i
j
.
{\displaystyle {\frac {1}{2}}{\frac {d^{2}I_{ij}}{dt^{2}}}=2T_{ij}+W_{ij}+\delta _{ij}\Pi -S_{ij}.}
This can be easily extended to rotating frame of references.
^ Chandrasekhar, S; Lebovitz NR (1962). "The Potentials and the Superpotentials of Homogeneous Ellipsoids" (PDF). Ap. J. 136: 1037–1047. Bibcode :1962ApJ...136.1037C . doi :10.1086/147456 . Retrieved March 24, 2012.
^ Chandrasekhar, S; Fermi E (1953). "Problems of Gravitational Stability in the Presence of a Magnetic Field" (PDF). Ap. J. 118: 116. Bibcode :1953ApJ...118..116C . doi :10.1086/145732 . Retrieved March 24, 2012.
^ Chandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 9. New Haven: Yale University Press, 1969.
^ Chandrasekhar, S. (1968). The virial equations of the fourth order. The Astrophysical Journal, 152, 293. http://repository.ias.ac.in/74364/1/93-p-OCR.pdf