Esakia space
In mathematics, Esakia spaces are special ordered topological spaces introduced and studied by Leo Esakia in 1974.[1] Esakia spaces play a fundamental role in the study of Heyting algebras, primarily by virtue of the Esakia duality—the dual equivalence between the category of Heyting algebras and the category of Esakia spaces.
Definition
[edit]For a partially ordered set (X, ≤) and for x∈ X, let ↓x = {y∈ X : y≤ x} and let ↑x = {y∈ X : x≤ y}. Also, for A⊆ X, let ↓A = {y∈ X : y ≤ x for some x∈ A} and ↑A = {y∈ X : y≥ x for some x∈ A}.
An Esakia space is a Priestley space (X,τ,≤) such that for each clopen subset C of the topological space (X,τ), the set ↓C is also clopen.
Equivalent definitions
[edit]There are several equivalent ways to define Esakia spaces.
Theorem:[2] Given that (X,τ) is a Stone space, the following conditions are equivalent:
- (i) (X,τ,≤) is an Esakia space.
- (ii) ↑x is closed for each x∈ X and ↓C is clopen for each clopen C⊆ X.
- (iii) ↓x is closed for each x∈ X and ↑cl(A) = cl(↑A) for each A⊆ X (where cl denotes the closure in X).
- (iv) ↓x is closed for each x∈ X, the least closed set containing an up-set is an up-set, and the least up-set containing a closed set is closed.
Since Priestley spaces can be described in terms of spectral spaces, the Esakia property can be expressed in spectral space terminology as follows: The Priestley space corresponding to a spectral space X is an Esakia space if and only if the closure of every constructible subset of X is constructible.[3]
Esakia morphisms
[edit]Let (X,≤) and (Y,≤) be partially ordered sets and let f : X → Y be an order-preserving map. The map f is a bounded morphism (also known as p-morphism) if for each x∈ X and y∈ Y, if f(x)≤ y, then there exists z∈ X such that x≤ z and f(z) = y.
Theorem:[4] The following conditions are equivalent:
- (1) f is a bounded morphism.
- (2) f(↑x) = ↑f(x) for each x∈ X.
- (3) f−1(↓y) = ↓f−1(y) for each y∈ Y.
Let (X, τ, ≤) and (Y, τ′, ≤) be Esakia spaces and let f : X → Y be a map. The map f is called an Esakia morphism if f is a continuous bounded morphism.
Notes
[edit]References
[edit]- Esakia, L. (1974). Topological Kripke models. Soviet Math. Dokl., 15 147–151.
- Esakia, L. (1985). Heyting Algebras I. Duality Theory (Russian). Metsniereba, Tbilisi.
- Dickmann, Max; Schwartz, Niels; Tressl, Marcus (2019). Spectral Spaces. New Mathematical Monographs. Vol. 35. Cambridge: Cambridge University Press. doi:10.1017/9781316543870. ISBN 9781107146723.