Information dimension
In information theory, information dimension is an information measure for random vectors in Euclidean space, based on the normalized entropy of finely quantized versions of the random vectors. This concept was first introduced by Alfréd Rényi in 1959.[1]
Simply speaking, it is a measure of the fractal dimension of a probability distribution. It characterizes the growth rate of the Shannon entropy given by successively finer discretizations of the space.
In 2010, Wu and Verdú gave an operational characterization of Rényi information dimension as the fundamental limit of almost lossless data compression for analog sources under various regularity constraints of the encoder/decoder.
Definition and Properties
[edit]The entropy of a discrete random variable is
where is the probability measure of when , and the denotes a set .
Let be an arbitrary real-valued random variable. Given a positive integer , we create a new discrete random variable
where the is the floor operator which converts a real number to the greatest integer less than it. Then
and
are called lower and upper information dimensions of respectively. When , we call this value information dimension of ,
Some important properties of information dimension :
- If the mild condition is fulfilled, we have .
- For an -dimensional random vector , the first property can be generalized to .
- It is sufficient to calculate the upper and lower information dimensions when restricting to the exponential subsequence .
- and are kept unchanged if rounding or ceiling functions are used in quantization.
d-Dimensional Entropy
[edit]If the information dimension exists, one can define the -dimensional entropy of this distribution by
provided the limit exists. If , the zero-dimensional entropy equals the standard Shannon entropy . For integer dimension , the -dimensional entropy is the -fold integral defining the respective differential entropy.
An equivalent definition of Information Dimension
[edit]In 1994, Kawabata and Dembo in Kawabata & Dembo 1994 proposed a new way of measuring information based on rate distortion value of a random variable. The measure is defined as
where is the rate-distortion function that is defined as
or equivalently, minimum information that could lead to a -close approximation of .
They further, proved that such definition is equivalent to the definition of information dimension. Formally,
Dimensional-Rate Bias
[edit]Using the above definition of Rényi information dimension, a similar measure to d-dimensional entropy is defined in Charusaie, Amini & Rini 2022 . This value that is named dimensional-rate bias is defined in a way to capture the finite term of rate-distortion function. Formally,
The dimensional-rate bias is equal to d-dimensional rate for continuous, discrete, and discrete-continuous mixed distribution. Furthermore, it is calculable for a set of singular random variables, while d-dimensional entropy does not necessarily exist there.
Finally, dimensional-rate bias generalizes the Shannon's entropy and differential entropy, as one could find the mutual information using the following formula:
Discrete-Continuous Mixture Distributions
[edit]According to Lebesgue decomposition theorem,[2] a probability distribution can be uniquely represented by the mixture
where and ; is a purely atomic probability measure (discrete part), is the absolutely continuous probability measure, and is a probability measure singular with respect to Lebesgue measure but with no atoms (singular part). Let be a random variable such that . Assume the distribution of can be represented as
where is a discrete measure and is the absolutely continuous probability measure with . Then
Moreover, given and differential entropy , the -Dimensional Entropy is simply given by
where is the Shannon entropy of a discrete random variable with and and given by
Example
[edit]Consider a signal which has a Gaussian probability distribution.
We pass the signal through a half-wave rectifier which converts all negative value to 0, and maintains all other values. The half-wave rectifier can be characterized by the function
Then, at the output of the rectifier, the signal has a rectified Gaussian distribution. It is characterized by an atomic mass of weight 0.5 and has a Gaussian PDF for all .
With this mixture distribution, we apply the formula above and get the information dimension of the distribution and calculate the -dimensional entropy.
The normalized right part of the zero-mean Gaussian distribution has entropy , hence
Connection to Differential Entropy
[edit]It is shown [3] that information dimension and differential entropy are tightly connected.
Let be a random variable with continuous density .
Suppose we divide the range of into bins of length . By the mean value theorem, there exists a value within each bin such that
Consider the discretized random variable if .
The probability of each support point is
Let . The entropy of is
If we set and then we are doing exactly the same quantization as the definition of information dimension. Since relabeling the events of a discrete random variable does not change its entropy, we have
This yields
and when is sufficiently large,
which is the differential entropy of the continuous random variable. In particular, if is Riemann integrable, then
Comparing this with the -dimensional entropy shows that the differential entropy is exactly the one-dimensional entropy
In fact, this can be generalized to higher dimensions. Rényi shows that, if is a random vector in a -dimensional Euclidean space with an absolutely continuous distribution with a probability density function and finite entropy of the integer part (), we have
and
if the integral exists.
Lossless data compression
[edit]The information dimension of a distribution gives a theoretical upper bound on the compression rate, if one wants to compress a variable coming from this distribution. In the context of lossless data compression, we try to compress real number with less real number which both have infinite precision.
The main objective of the lossless data compression is to find efficient representations for source realizations by . A code for is a pair of mappings:
- encoder: which converts information from a source into symbols for communication or storage;
- decoder: is the reverse process, converting code symbols back into a form that the recipient understands.
The block error probability is .
Define to be the infimum of such that there exists a sequence of codes such that for all sufficiently large .
So basically gives the ratio between the code length and the source length, it shows how good a specific encoder decoder pair is. The fundamental limits in lossless source coding are as follows.[4]
Consider a continuous encoder function with its continuous decoder function . If we impose no regularity on and , due to the rich structure of , we have the minimum -achievable rate for all . It means that one can build an encoder-decoder pair with infinity compression rate.
In order to get some nontrivial and meaningful conclusions, let the minimum achievable rate for linear encoder and Borel decoder. If random variable has a distribution which is a mixture of discrete and continuous part. Then for all Suppose we restrict the decoder to be a Lipschitz continuous function and holds, then the minimum achievable rate for all .
The fundamental role of information dimension in lossless data compression further extends beyond the i.i.d. data. It is shown that for specified processes (e.g., moving-average processes) the ratio of lossless compression is also equal to the information dimension rate.[5] This result allows for further compression that was not possible by considering only marginal distribution of the process.
See also
[edit]Notes
[edit]- ^ See Rényi 1959.
- ^ See Çınlar 2011.
- ^ See Cover & Thomas 2012.
- ^ See Wu & Verdu 2010.
- ^ See Charusaie, Amini & Rini 2022
References
[edit]- Çınlar, Erhan (2011). Probability and Stochastics. Graduate Texts in Mathematics. Vol. 261. Springer. doi:10.1007/978-0-387-87859-1. ISBN 978-0-387-87858-4.
- Cover, Thomas M.; Thomas, Joy A. (2012). Elements of Information Theory (2nd ed.). Wiley. pp. 247–248. ISBN 9781118585771.
- Rényi, A. (March 1959). "On the dimension and entropy of probability distributions". Acta Mathematica Academiae Scientiarum Hungaricae. 10 (1–2): 193–215. doi:10.1007/BF02063299. ISSN 0001-5954. S2CID 121006720.
- Wu, Yihong; Verdu, S. (August 2010). "Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression". IEEE Transactions on Information Theory. 56 (8): 3721–3748. doi:10.1109/TIT.2010.2050803. ISSN 0018-9448. S2CID 206737933.
- Charusaie, M.; Amini, A.; Rini, S. (May 2022). "Compressibility Measures for Affinely Singular Random Vectors". IEEE Transactions on Information Theory. 68 (9): 6245–6275. arXiv:2001.03884. doi:10.1109/TIT.2022.3174623.
- Kawabata, T.; Dembo, A. (September 1994). "The Rate-Distortion Dimension of Sets and Measures". IEEE Transactions on Information Theory. 40 (5): 1564–1572. doi:10.1109/18.333868.