Talk:Cavalieri's principle
This article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Archimedes did not use limits
[edit]The method of exhaustion is most similar to the sandwich theorem. Archimedes used the property that states:
Given any magnitude x (whether commensurable or incommensurable with other magnitudes), there exist rational numbers m and n, such that m < x < n. This is the correct statement of the Archimedean property.
I am John Gabriel, the discoverer of the New Calculus, the first and only rigorous formulation of calculus in human history. Most of your math articles are nonsense.
2601:5C4:C500:75C0:2830:B46D:D222:5317 (talk) 13:31, 24 March 2018 (UTC)
Spheres and Cone Example
[edit]This example states that
the plane located y units above the "equator" intersects the sphere in a circle of area
And that
the area of the plane's intersection with the part of the cylinder that is outside of the cone is also
Can someone double check that? I am trying to follow through the example and it seems that the area of the intersection circle in the sphere should be and the intersection ring of the inner cylinder outside of the ring should be , different from what is claimed. —Preceding unsigned comment added by 192.223.226.6 (talk • contribs)
- The article's statements are correct and yours are not. The circumference of the intersection of the plane with the sphere is 2π√(r2 − y2), i.e. it's 2π times the radius. The area is π times the square of the radius. Since the radius is √(r2 − y2), the area is π(r2 − y2).
- Remember that the area needs to be proportional to the squares of the distances involved, and that fails to happen in either of the two formulas you give.
- Similarly in the cone example, what you give is the difference between the circumferences rather than the difference between the areas of the two concentric circles. Michael Hardy (talk) 20:22, 28 May 2009 (UTC)
- Ah, that was very silly of me. Thanks for the clairification and the quick response. 192.223.226.6 (talk) 13:20, 29 May 2009 (UTC)
Missing working, missing triangle
[edit]I had to read the same proof several times until I realized that a whole lot of working is missing in the jump to Pythagoras, which is asserted but not demonstrated. It would help if it was shown on the diagram that it is the annulus we are interested in (it should be shaded) and similarly that the slice through the sphere (shaded the same way) has that same area -- we need the triangle from the centre of the sphere to the centre of the slice to a point on the slice's circumference. Then Pythagoras appears, and then even I can follow the rest of the proof. Chiswick Chap (talk) 08:44, 24 October 2013 (UTC)
Possible change
[edit]I think we should change this:
"It is a short step from there to the conclusion that the area under a single whole cycloidal arch is three times the area of the circle. Which then means that the area of a rectangle bounding one half of a single cycloidal arch is two times the area of the circle, the area of a rectangle bounding a single whole cycloidal arch is four times the area of the circle, and the rectangularly-bounded area above a single whole cycloidal arch is exactly equal to the area of the circle.[citation needed]"
to this:
"It is a short step from there to the conclusion that the area under a single whole cycloidal arch is three times the area of the circle. (In addition, if you draw a rectangle around a cycloidal arch, the area of the portion of the rectangle _above_ the arch is exactly equal to that of the circle.)"
Also, why the "citation needed"? You can follow the logic by yourself.
Date of Formulation?
[edit]Shouldn't the article make some mention of the (perhaps approximate) date on which the principle was formulated (in Europe)? Did Cavalieri come up with it, or is it just now named after him? The article states: "Cavalieri's principle was originally called the method of indivisibles, the name it was known by in Renaissance Europe." Was it known in Renaissance Europe before him (and perhaps he merely formalized it, clarified it, or otherwise popularized it), or was it known there because of him? If the former, then when was it first formulated in Europe? If the latter, when did he come up with it? Either way it should be mentioned, even if we can give a no better answer than "in the 17th century" (the time during which Cavalieri lived). Does anyone know the details? — Preceding unsigned comment added by Shawn81 (talk • contribs) 15:19, 31 August 2015 (UTC)
External links modified
[edit]Hello fellow Wikipedians,
I have just modified one external link on Cavalieri's principle. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20090202060633/http://dividano.de:80/prinzip-von-cavalieri.html to http://www.dividano.de/prinzip-von-cavalieri.html
When you have finished reviewing my changes, please set the checked parameter below to true or failed to let others know (documentation at {{Sourcecheck}}
).
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 14:20, 17 November 2016 (UTC)
Volume of a paraboloid
[edit]In an analogy to the volume of a hemisphere, one can prove that the volume of a parabolid is half of its circumscribed cylinder. יהודה שמחה ולדמן (talk) 14:13, 3 August 2018 (UTC)
- Only a few months ago I was able to find a YouTuber who was both able and willing to do me this huge favor of creating a video on YouTube based on my original proof sketch.
- I hope someone will add this proof to the main page. יהודה שמחה ולדמן (talk) 23:35, 29 December 2020 (UTC)
Suggested change, most pertinent.
[edit]"using a method resembling Cavalieri's principle"
This was WAY before Cavalieri's existed, and should not be stated as the method used by Archimedes. He invented his own way to calculate it which later on was resembled by Cavalieri, not vice versa.
And also, Archimedes was fantastic ! If only 10% of all the scientists were like him today, we'd be sitting on Mars already. (non-pertinent comment.)
I mean he'd be fantastic today, so that would make him fantastic squared back 2500 years ago.